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1. Introduction
Risk-sharing pools

I Consider a pool of individual random future losses.

I Centralized risk-sharing:
I Refers to risk transfer mechanisms where the individual losses
faced by the members of the pool are passed to a central
insurer.

I Each insured in the insurance portfolio is compensated
ex-post from the insurer for his loss.

I In return, the insurer charges an ex-ante premium to each
insured and sets up a solvency capital at initiation.

I The premiums follow from an appropriate premium principle.

I Premiums and solvency capital are set such that the
probability that their sum at time 1 exceeds the aggregate loss
of the insurance portfolio is suffi ciently high.
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1. Introduction
Risk-sharing pools

I Consider again a pool of individual random future losses.
I Decentralized risk-sharing (DRS):

I Refers to risk-sharing (RS) mechanisms under which the
participants in the pool share their risks among each other.

I Each participant in the risk-sharing pool is compensated
ex-post from the pool for his loss.

I In return, each participant pays an ex-post contribution to
the pool.

I These contributions follow from an appropriate
risk-sharing rule, which is chosen such that the sum of all
individual contributions to the pool is equal to the aggregate
loss of the pool.

I A decentralized approach does not require setting up a
solvency capital, due to the full allocation condition.
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1. Introduction
Risk-sharing pools

I Risk-sharing pools of i.i.d. losses:

I A natural choice for i.i.d.3 losses is the uniform risk-sharing
rule, where each participant contributes ex-post an equal part
of the aggregate loss.

I Risk-sharing pools of losses which are not i.i.d.:
I In this case, the choice of an appropriate and simple RS rule is
often not straightforward.

I A possible choice is the conditional mean RS (CMRS) rule4,
where each participant contributes ex-post the conditional
expectation of his loss brought to the pool, given the
aggregrate loss covered by the pool.

3 i.i.d. = independent and identically distributed.
4See D,D (2012).
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1. Introduction
Peer-to-peer (P2P) insurance

I P2P insurance (also called collaborative insurance,
crowdsurance or decentralized insurance) refers to the risk
management strategy where:

I a group of participants bring their losses together in a RS pool,
I the pool covers the losses of its participants,
I against a contribution to be determined and paid ex post by
each member.

I The group of participants who form the pool can consist of:
I friends, family members, affi nity groups, patients suffering a
same disease, etc.

I lawyers, farmers, physicians, etc., who form a risk pool to
protect themselves against professional risks.

I Natural catastrophes and major industrial risks (induced by
nuclear plants e.g.) are often covered by RS pools.
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1. Introduction
Peer-to-peer (P2P) insurance

I P2P insurance revives early forms of mutual insurance
(where the contributions of the many are used to cover the
losses of the few).

I Risk-sharing mechanisms have been studied for decades in the
actuarial literature, starting with the pioneering work of Karl
Borch on equilibrium in reinsurance markets in the 1960’s.
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1. Introduction
Peer-to-peer (P2P) insurance

I The recent interest in a sharing economy, collaborative
consumption and decentralized finance/insurance,
together with recent advances in technology have made
P2P insurance a viable candidate to partially disrupt the
traditional insurance sector.

I In response to these recent evolutions, several actuarial
researchers have shown a renewed interest in the math
supporting P2P insurance5.

5See e.g. Abdikerimova & Feng (2019), Denuit (2019), Denuit, Dhaene &
Robert (2022), Feng, Liu & Zhang (2022), Jiao, Kou, Liu & Wang (2022),
Feng (2023).
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1. Introduction
Conventions and notations

I Time 0 is ’now’.

I All r.v.’s are real-valued and defined on the atomless
probability space (Ω,F ,P).

I A random vector is denoted by a bold upper-case letter with
subscript indicating its dimension, e.g.

Xn = (X1,X2, . . . ,Xn) ,

I while its realization (observed at time 1) is denoted by the
corresponding bold lower-case small letter, e.g.

xn = (x1, x2, . . . , xn)
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2. Risk-sharing and risk-sharing rules
Agents and their losses

I Let χ be an appropriate (suffi ciently rich) set of r.v.’s on
(Ω,F ,P), representing possible random losses at time 1.6

I Consider n economic agents, numbered i = 1, 2, . . . , n.

I Each agent i faces a l loss Xi ∈ χ at the end of the
observation period [0, 1].

I Without insurance or pooling, each agent bears his own loss:
I At time 1, agent i suffers loss xi , which is the realization of Xi .

6If not explicitely stated differently, we assume that χ = L1 or L1+,
appropriate for the situation at hand.
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2. Risk-sharing and risk-sharing rules
Pools of losses

I The joint cdf of the the loss vector Xn is denoted by FXn .

I The marginal cdf’s of the individual losses are denoted by
FX1 ,FX2 , . . . ,FXn , respectively.

I The aggregate loss faced by the n agents with loss vector Xn
is denoted by SXn = ∑n

i=1 Xi .

I Hereafter, we will often call Xn the pool, and call each agent
a participant in the pool.

I In case no confusion about n is possible, we will write X
instead of Xn and SX (or S) instead of SXn .
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2. Risk-sharing and risk-sharing rules
Allocations

I Definition: For any pool X ∈ χn with aggregate loss SX, the
set AX is defined by:

AX =
{
(Y1,Y2, . . . ,Yn) ∈ χn |

n

∑
i
Yi = SX

}
I The elements of AX are called the n-dimensional allocations
of X in χn.
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2. Risk-sharing and risk-sharing rules
Risk-sharing

I Definition: Risk-sharing in a pool X ∈ χn is a two-stage
process.

I Ex-ante step (at time 0):
The losses Xi in the pool are re-allocated by transforming X
into another random vector C (X) ∈ AX:

C (X) =
(
C1 (X) , C2 (X) , . . . , Cn (X)

)
I Ex-post step (at time 1):

I Each participant i receives from the pool the realization of his
loss Xi .

I In return, he pays to the pool the realization of his
re-allocated loss Ci (X).

I Remark:
I As C (X) ∈ AX, risk sharing is self-financing:

n

∑
i=1

Ci (X) =
n

∑
i=1

Xi

I This condition is called the full allocation condition.
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2. Risk-sharing and risk-sharing rules
Risk-sharing rules

I Remarks:
I For any participant i in the pool X = (X1,X2, . . . ,Xn),

I Xi is called his loss, (paid by the pool).

I Ci (X) is called his contribution, (paid to the pool).

I Contribution vector:

C (X) =
(
C1 (X) , C2 (X) , . . . , Cn (X)

)
I Definition: A risk-sharing rule is a mapping C : χn → χn

which transforms any pool X ∈ χn into a contribution vector
C (X) ∈ AX:

X ∈ χn → C (X)∈ AX
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2. Risk-sharing and risk-sharing rules
Risk-sharing rules

Example 2.1:

I Suppose that χ = L1+.

I Consider the RS rule Cprop : χ2 → χ2 where for any X ∈ χ2,
the contribution vector Cprop (X) ∈ AX ⊆ χ2 is given by

C propi (X) =
E[Xi ]
E[SX]

SX, i = 1, 2

I Interpretation: Each participant contributes a fixed
proportion of the total loss SX, which is in accordance with his
contribution to the expected aggregate loss.

I This RS rule is called the proportional risk-sharing rule.
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2. Risk-sharing and risk-sharing rules
Risk-sharing rules

Example 2.2:

I At time 1, we flip a coin. The r.v. Z equals 0 in case of heads
and 1 in case of tails.

I Consider the RS rule C : χ2 → χ2, which is defined such that
for any pool X = (X1,X2),

C1 (X) =
{
X1 + X2 : Z = 0
0 : Z = 1

and

C2 (X) =
{

0 : Z = 0
X1 + X2 : Z = 1

I Observations: In order to determine the realization of C (X):
I Knowledge of the realization of X is not suffi cient7.
I Knowledge of the realizations of X1 + X2 and Z is required.

7In other words, C (X) is not X-measurable, see further.
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2. Risk-sharing and risk-sharing rules
Risk-sharing rules

I Consider a RS rule C : χn → χn and a pool X ∈ χn.

I In order to be able to determine the contribution Ci (X) of
each participant i at time 1, one may need different types of
information:

I Deterministic information (available at time 0):
I certain parameters (e.g. expectations of the Xi ),
I certain cdf’s (e.g. the cdf’s Fi of the Xi , or the cdf FX of X).

I Realizations of random quantities (available at time 1):
I outcomes of certain r.v.’s and random vectors (e.g. outcome
of SX, or outcome of X, or outcome of other r.v.’s )
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2. Risk-sharing and risk-sharing rules
Risk-sharing rules

I At time 0, the contribution vector C (X) is a random vector,
as it depends on X, and eventually also on other sources of
randomness.

I Knowing the realization of X is often not suffi cient to know
the realization of C (X).

I This means that in general we don’t assume that C (X) is
X-measurable.

I In other words, in general we don’t assume that there exists a
function h : Rn → Rn such that C (X) = h (X).

I At time 1, the contribution vector is a deterministic vector,
as the realization of any random source in C (X) is assumed
to be observable at time 1.
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2. Risk-sharing and risk-sharing rules
Combining risk retention, risk-sharing and risk transfer

I In order to reduce his contribution to the pool, a participant
with initial loss Yi may:

I retain part of Yi
I transfer part of Yi to an insurer,
I share the remaining part of Yi with the members of a pool.

I In this presentation:
I Xi denotes the loss that i shares in the pool, after eventual
retention and transfer of risk.

I Ci (X) denotes the contribution of i to the pool.

I Example:
I Suppose that participant i retains the lower layer [0, li ) of
initial loss Yi ≥ 0,

I and transfers the upper layer [ui ,∞) of Yi , with ui > li to an
insurer.

I The loss shared in the pool is then

Xi = (Yi − li )+ − (Yi − ui )+
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3. Examples of risk-sharing rules
The stand-alone risk-sharing rule

I Definition: C : χn → χn is the stand-alone RS rule if

C (X) = X, for any X ∈ χn

I Interpretation: This RS rule corresponds to the case where
individuals decide not to pool their risks.

I The pool just acts as a register to collect data about individual
losses, without re-allocating them among participants.
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3. Examples of risk-sharing rules
The uniform risk-sharing rule

I Definition: The uniform RS rule Cuni is defined by

Cuni
i (X) =

SX
n
, i = 1, 2, . . . , n,

for any X ∈ χn.

I Interpretation: This RS rule equally distributes the aggregate
loss SX over all participants.

I It is the most simple, non-trivial and well-known RS rule.
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3. Examples of risk-sharing rules
The order statistics risk-sharing rule

I The i-th order statistic X(i ) of a random vector
X = (X1,X2, . . . ,Xn) is the i-th smallest value in X. Hence,
X(1) ≤ X(2) ≤ . . . ≤ X(n).

I Definition: The order statistics RS rule Cord is defined by

Cord (X) =
(
X(1),X(2), . . . ,X(n)

)
for any X ∈ χn.

I Interpretation: Participants are ordered in ascending
risk-bearing capacity (e.g. age), and a higher risk-bearing
capacity leads to a higher contribution.
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3. Examples of risk-sharing rules
The conditional mean risk-sharing rule

I Definition: The conditional mean RS rule Ccm is defined
by

C cm
i (X) = E [Xi | SX] , i = 1, 2, . . . , n,

for any X ∈ χn ⊆
(
L1
)n.

I Interpretation: Each participant contributes the expected
value of the loss he brings to the pool, given the aggregate
loss experienced by the pool.

I The CMRS rule was introduced in the actuarial literature in
D,D (2012)8. It has many nice properties, see D,D,R (2022).
Its axiomatic characterization is given in Jiao, Kou, Liu &
Wang (2022).

8An early reference is Landsberger & Meilijson (1994).
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3. Examples of risk-sharing rules
The conditional mean risk-sharing rule

I A reshuffl e of the pool X = (X1,X2, . . . ,Xn) is a random
vector Xπ defined by

Xπ =
(
Xπ(1),Xπ(2), . . . ,Xπ(n)

)
,

where π = (π(1),π(2), . . . ,π(n)) is a permutation of
{1, . . . , n}.

I Interpretation: X and Xπ are composed of the same
individual losses, but only their places are interchanged: After
reshuffl ing, Xπ(i ) is the new loss attributed to participant i .

I Definition:9 The pool X is exchangeable in case for any

reshuffl e π of X, one has that Xπ d
= X.

9Xπ d
= X is a notation for ’Xπ and X have the same cdf’.
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3. Examples of risk-sharing rules
The conditional mean risk-sharing rule

I The losses of an exchangeable pool are i.d.10, but not
necessary mutually independent.

I Property: In case the pool X ∈ χn is exchangeable, then

C cm
i (X) = E [Xi | SX] =

SX
n

holds for any participant i .

I Interpretation: For any participant in an exchangeable pool,
the contributions according to the conditional mean RS rule
and the uniform RS rule are equal.

10The notation ’i.d.’ stands for ’identically distributed’.
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4. Internal risk-sharing rules
Definition

I Definition:
C : χn → χn is an internal RS rule if for any pool X ∈ χn,
one has that C (X) is X-measurable.

I Interpretation:
C is internal in the sense that the randomness of any
contribution vector C (X) is solely due to the randomness of
the loss vector X.

I Example 4.1:

C (X) =

{ (
X1+X2
2 , X1+X22

)
: FX1 = FX2

(X1,X2) : FX1 6= FX2
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4. Internal risk-sharing rules
Definition

I Characterization:
C : χn → χn is an internal RS rule if and only if any of the
following equivalent conditions holds:

(1) For any X ∈ χn , there exists a function hint : Rn → Rn such
that

C (X) = hint (X)

(2) For any X ∈ χn , one has that

C (X) = E [C (X) | X]

I Important remark:

The function hint may be pool-specific (see e.g. Example 4.1).
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4. Internal risk-sharing rules
Counterexample

Example 2.2 (revisited):

I At time 1, we flip a coin. The r.v. Z equals 0 in case of heads
and 1 in case of tails.

I Consider the RS rule C : χ2 → χ2, which is defined such that
for any pool X = (X1,X2),

C1 (X) =
{
X1 + X2 : Z = 0
0 : Z = 1

and

C2 (X) =
{

0 : Z = 0
X1 + X2 : Z = 1

I Observations:
I It is impossible to find for any pool X a function
hint : R2 → R2 such that C (X) = hint (X).

I This means that C is not an internal RS rule.
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4. Internal risk-sharing rules
Examples of internal RS rules

I Stand-alone RS: internal,

C (X) = X

I Uniform RS: internal,

Cuni
i (X) =

SX
n

I Proportional RS: internal,

Cprop
i (X) =

E[Xi ]
E[SX]

SX

I Order statistics RS: internal,

C ord
i (X) = X(i )

I Conditional mean RS: internal,

C cm
i (X) = E [Xi | SX]
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4. Internal risk-sharing rules
Example

Example 4.2:

I Consider the RS rule C : χn → χn, where any X ∈ χn is a
pool of health-related costs of the participants.

I Suppose the participants can be divided in m age categories,
denoted by 1, 2, . . . ,m:

I For any pool X ∈ χn , the age category of participant i is
known at time 0, and denoted by ai (X).

I The RS rule C is defined by

Ci (X) =
m

∑
j=1

(
∑n
k=1 Xk × 1ak (X)=j
∑n
k=1 1ak (X)=j

)
× 1ai (X)=j
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4. Internal risk-sharing rules
Example

Example 4.2 (cont’d):

I The RS rule C is defined by

Ci (X) =
m

∑
j=1

(
∑n
k=1 Xk × 1ak (X)=j
∑n
k=1 1ak (X)=j

)
× 1ai (X)=j

I Interpretation: Losses are uniformly shared within each age
category.

I Observations:
I C is an internal RS rule.
I C is in general not a type I - internal RS rule.
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5. Aggregate risk-sharing rules
Definition

I Definition:

RS rule C : χn → χn is an aggregate RS rule if for any pool
X ∈ χn, one has that C (X) is SX-measurable.

I Interpretation:
C is aggregate in the sense that the randomness of any
contribution vector C (X) is solely due to the randomness of
aggregate claims SX.

I Remark:
An aggregate RS rule is anonymous, in the sense that it
doesn’t care about the ’origin’of the aggregate loss SX.

I Example 5.1:

C (X) =


( 1
3SX,

2
3SX

)
: E[X1] ≤ E[X2]( 2

3SX,
1
3SX

)
: E[X1] > E[X2]
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5. Aggregate risk-sharing rules
Definition

I Characterization:
C : χn → χn is an aggregate RS rule if and only if any of
the following equivalent conditions holds:

(1) For any X ∈ χn , there exists a function haggr : R→ Rn such
that

C (X) = haggr (SX)

(2) For any X ∈ χn , one has that

C (X) = E [C (X) | SX]

I Important remark:
haggr may be pool-specific (see e.g. Example 5.1).
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5. Aggregate risk-sharing rules
Definition

I Property:
An aggregate RS rule is an internal RS rule.

I Proof:
I Let C : χn → χn be an an aggregate RS rule and X ∈ χn .

I There exists a function haggr : R→ Rn such that

C (X) = haggr (SX)

I Define the function hint : Rn → Rn such that

hint (x) = haggr (x1 + . . .+ xn)

I Then we find that
C (X) = hint (X)

I We can conclude that C is an internal RS rule. 5
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5. Aggregate risk-sharing rules
Examples

I Stand-alone RS: not aggregate,

C (X) = X

I Uniform RS: aggregrate,

Cuni
i (X) =

SX
n

I Proportional RS: aggregate,

Cprop
i (X) =

E[Xi ]
E[SX]

SX

I Order statistics RS: not aggregate,

C ord
i (X) = X(i )

I Conditional mean RS: aggregate,

C cm
i (X) = E [Xi | SX]
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5. Aggregate risk-sharing rules
Examples

Example 5.2:
I Consider the RS rule C : χ2 → χ2 where any X ∈ χ2 is a pool
of health-related costs of 2 participants.

I Suppose the participants can be divided in m age categories,
denoted by 1, 2, . . . ,m:

I For any X ∈ χ2, the age category of participant i is denoted
by ai (X).

I The RS rule C is defined by

C (X) =

{ (
SX
2 ,

SX
2

)
: if a1 (X) = a2 (X)

(E [X1 | SX] ,E [X2 | SX]) : if a1 (X) 6= a2 (X)
I Observations:

I C is an aggregate RS rule:

C (X) = haggr (SX)

I haggr is pool-specific as it depends on (a1 (X) , a2 (X)).
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6. Properties of risk-sharing rules
Introduction

I Premium principles: have been studied in detail around the
’eighthies’11.

I Risk measures: During the the ’nineties’and beyond, risk
measures and their axiomatic characterizations have been
studied extensively12.

I Risk sharing schemes: Recently, the study of decentralized
RS has (re-)gained a great interest.

I Hereafter, we present a non-exhaustive list of properties that
RS rules should/could satisfy13.

I Some properties are inspired by properties of premium
principles or risk measures, other are tailored to RS rules.

11Goovaerts, De Vijlder & Haezendonck (1984) is a key reference.
12Artzner, Delbaen, Eber & Heath (1997) is a fundamental paper.
13See D,D,R (2022).
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6. Properties of risk-sharing rules
Classes of properties

I Conservation properties: also hold for the stand-alone RS
rule: reshuffl ing, normalization, translativity, positive
homogeneity, constancy, no rip-off, actuarial fairness, law
invariance.

I Improvement properties: guarantee that the RS rule
’improves’the situation compared to the stand-alone
situation: willingness-to-join, comonotonicity.

I Coalition properties: guarantee that participants are not
affected by coalitions set up between other participants:
coalition fairness, merging fairness.

I Specific pool properties: should hold (or not) for specific
pools only: stand-alone property for comonotonic pools,
uniformity property for exchangeable pools.
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6.1. Conservation properties of risk-sharing rules
The ’reshuffl ing’property

I Definition:14 A RS rule C : χn → χn satisfies the reshuffl ing
property if for any X ∈ χn and any of its reshuffl es Xπ, one
has that

Ci (Xπ) = Cπ(i ) (X) for any i = 1, . . . , n (1)

I Example:
I Consider X = (X1, X2, X3) and Xπ = (X3, X1, X2).

I If (1) holds, then

π(1) = 3⇒ C1 (Xπ) = C3 (X)

I Interpretation : If participants exchange their individual
losses, then their contributions are changed in the same way.

14Jiao, Yiao, Liu & Wang (2022), hereafter abbreviated as J,K,L,W (2022),
call this property symmetry.
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6.1. Conservation properties of risk-sharing rules
The ’reshuffl ing’property

I Order statistics RS: does not satisfy reshuffl ing,

C ord1 (Xπ) = C ord1
(
X3,X2,X1

)
= min

(
X1,X2,X3

)
while

C ordπ(1) (X) = C
ord
3

(
X1,X2,X3

)
= max

(
X1,X2,X3

)

I Conditional means RS: satisfies reshuffl ing,

C cmi (Xπ) = E
[
Xπ(i ) | S

]
= C cmπ(i ) (X)
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6.1. Conservation properties of risk-sharing rules
The ’normalization’property

I Definition:15 A RS rule C : χn → χn satisfies the
normalization property if for any X ∈ χn, one has

Xi = 0⇒ Ci (X) = 0

holds for any i .

I Interpretation: A participant with a zero loss has a zero
contribution.

I Remark: If a RS rule satisfies the reshuffl ing property, then a
suffi cient condition for the normalization property to hold is
that it holds for the last participant.

15J,K,L,W (2022) call this property zero preserving. Normalization as defined
here is a weaker property than normalization defined in D,D,R (2022).
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6.1. Conservation properties of risk-sharing rules
The ’normalization’property

I Uniform RS: does not satisfy normalization,

Cuni
3

(
X1,X2, 0

)
=
X1 + X2
3

I Conditional means RS: satisfies normalization,
I The CMRS satisfies reshuffl ing.

I Furthermore,

C cm
n
(
X1,X2, . . . ,Xn−1, 0

)
= E [0 | S ] = 0
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6.1. Conservation properties of risk-sharing rules
The ’translativity’property

I Notation: ej is the n-dimensional unit vector with all
components equal to 0, except the j-th component which
equals 1.

I Definition: A RS rule C : χn → χn satisfies the translativity
property if for any X ∈ χn and any participant j = 1, . . . , n,
one has that

Ci (X+ c ej ) = Ci (X) , for all i 6= j and any c ≥ 0
I Interpretation: Increasing the loss of participant j by a
deterministic amount c ≥ 0, leaves the contributions of the
other participants unchanged.

I Consequence: In case the RS rule C satisfies the translativity
property, then

Cj (X+ c ej ) = Cj (X) + c
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6.1. Conservation properties of risk-sharing rules
The ’translativity’property

I Remark: If the RS rule satisfies the reshuffl ing property, then
a suffi cient condition for the translativity property to hold is
that it holds for the last participant.

I Uniform RS: does not satisfy translativity,

Cuni
1

(
X1,X2,X3 + c

)
=
S + c
3
6= S
3
= Cuni

1

(
X1,X2,X3

)
I Conditional mean RS satisfies translativity,

I The CMRS satisfies reshuffl ing.

I For any i 6= n, one has

C cm
i
(
X+ c 1n

)
= E[Xi | |S + c ] = E[Xi | S ] = C cm

i
(
X
)
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6.1. Conservation properties of risk-sharing rules
The ’positive homogeneity’property

I Definition:
A RS rule C : χn → χn satisfies the positive homogeneity
property16 if for any X ∈ χn, one has that

Ci (c X) = c × Ci ( X)

holds for any i and any c ≥ 0.

I Interpretation: Multiplying all losses by c ≥ 0 implies that
all contributions change in the same way.

16c X stands for (c × X1, c × X2, . . . , c × Xn)
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6.1. Conservation properties of risk-sharing rules
The ’positive homogeneity’property

I Proportional RS is positive homogeneous,

Cprop
i (c X) =

E[c Xi ]
E[c S ]

(c × S)

= c
E[Xi ]
E[S ]

S = c × Cprop
i (X)

I Order statistics RS is positive homogeneous,

C ord
i (c X) = c × X(i ) = c × C ord

i (X)

I Conditional mean RS is positive homogeneous,

C cm
i (c X) = E[c × Xi | c × S ] = c E[Xi | S ] = c × C cm

i (X)

52 / 101



6.1. Conservation properties of risk-sharing rules
The ’constancy’property

I Definition:17 A RS rule C : χn → χn satisfies the constancy
property if for any X ∈ χn, one has

Xj = c ⇒ Ci (X) = c

holds for any j and any c ≥ 0.

I Interpretation: In case a participant’s loss is a non-negative
constant, then his contribution is equal to that constant.

I Remark: If the RS rule satisfies the reshuffl ing property, then
a suffi cient condition for the constancy property to hold is
that it holds for the last participant.

17Constancy as defined here is a weaker property than the constancy defined
in D,D,R (2022). Constancy is called constant preserving in J,K,L,W (2022).
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6.1. Conservation properties of risk-sharing rules
The ’constancy’property

I Uniform RS: does not satisfy constancy,

Cuni
3

(
X1,X2, c

)
=
X1 + X2 + c

3

I Proportional RS: does not satisfy constancy,

Cprop
3

(
X1,X2, c

)
=

c
E[S ]

S

I Conditional mean RS: satisfies constancy,

C cm
n

(
X1,X2, . . . ,Xn−1, c

)
= E[c | S ] = c
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6.1. Conservation properties of risk-sharing rules
The ’constancy’property

I Proposition:
If a RS rule satisfies translativity and normalization, then it
also satisfies constancy.

I Proof:
I The case where Xn = c :

Cn
(
X1,X2, . . . ,Xn−1, c

)
= Cn

(
X1,X2, . . . ,Xn−1, 0+ c

)
transl.
= Cn

(
X1,X2, . . . ,Xn−1, 0

)
+ c

normaliz.
= c

I The case where Xj = c for j 6= n is proven similarly. 5
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6.1. Conservation properties of risk-sharing rules
The ’no rip-off’property

I The ’largest value’of r.v. X :

F−1X (1) = inf{x ∈ R | FX (x) = 1}

I Definition:18 A RS rule C : χn → χn satisfies the no rip-off
property if for any X ∈ χn, one has that

Ci (X) ≤ F−1Xi (1)

holds for any i = 1, 2, . . . , n.

I Interpretation: The participant’s contribution will never
exceed his ’worst-case loss’.

18J,K,L,W (2022) call this property the ’risk fairness’axiom.
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6.1. Conservation properties of risk-sharing rules
The ’no rip-off’property

Uniform RS: does not satisfy no-ripoff,19

Cuni
1

(
U, 2U

)
=
3U
2
∈ [0, 1.5]

Proportional RS: does not satisfy no-ripoff,

Cprop
3

(
X1,X2, c

)
=

c
E[S ]

S

Conditional mean RS: satisfies no rip-off,

C cm
i

(
X
)
= E[Xi | S ] ≤ E[F−1Xi (1) | S ] = F

−1
Xi
(1) .

19In this text, the notation U is used exclusively for a r.v. which is uniformly
distributed over [0, 1].
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6.1. Conservation properties of risk-sharing rules
The ’actuarial fairness’property

III Definition: A RS rule C : χn → χn satisfies
actuarial fairness if for any X ∈ χn, one has that

E
[
Ci
(
X
)]
= E [Xi ]

holds for any i = 1, 2, . . . , n.

I Interpretation: On average, participants do neither gain nor
lose from risk sharing, in the sense that their expected
contribution (by joining the pool) is equal to their expected
loss (when staying alone).
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6.1. Conservation properties of risk-sharing rules
The ’actuarial fairness’property

I Uniform RS: does not satisfy actuarial fairness,
I Consider the loss vector

(
U,U, 4U

)
.

I Expected loss of first participant:

E[U ] =
1
2

I Expected contribution of first participant:

E
[
Cuni
1
(
U,U, 4U

)]
= E

[U + U + 4U
3

]
= 1

I Conditional mean RS: satisfies actuarial fairness,

E [C cm
i (X)] = E

[
E[Xi | S ]

]
= E [Xi ]
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6.1. Conservation properties of risk-sharing rules
The ’actuarial fairness’property

I Proposition:
If a RS rule satisfies actuarial fairness and no rip-off, then it
also satisfies constancy.

I Proof
I Suppose Xi = c .
I Actuarial fairness implies

E [Ci (X)] = E [Xi ] = c

I No rip-off implies

Ci (X) ≤ F−1Xi (1) = c

I We can conclude that

Ci (X) = c

5
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6.1. Conservation properties of risk-sharing rules
The ’law-invariance’property

I Definition:

A RS rule C : χn → χn satisfies the law-invariance property
in case

X d
= Y ⇒ C (X) d

= C (Y)

holds for any X and Y ∈ χn.

I Interpretation:

If pools are ’equal in distribution’, then also their contribution
vectors are ’equal in distribution’.
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6.1. Conservation properties of risk-sharing rules
The ’law-invariance’property

I Proportional RS: is law invariant: If X d
= Y, then(

E[X1]
E[SX]

SX, . . . ,
E[Xn ]
E[SX]

SX

)
d
=

(
E[Y1]
E[SY]

SY, . . . ,
E[Yn ]
E[SY]

SY

)

I Conditional means RS: is law invariant: If X d
= Y, then

E [X | SX]
d
= E [Y | SY]
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6.1. Conservation properties of risk-sharing rules
The ’law-invariance’property

Example 6.1.1:
I Suppose that U and V are i.i.d. r.v.’s in χ which are
uniformly distributed over the unit interval.

I Consider the RS rule C : χ2 → χ2 defined by

C (X) =

{
(X1,X2) : if X1 = U(

X1+X2
2 , X1+X22

)
: otherwise

I Observation:

(U, 1− U) d
= (V , 1− V ) but C (U, 1− U)

d
6= C (V , 1− V )

I Conclusion: C is not ’law-invariant’in the sense that there
exist pools X and Y, such that

X d
= Y and C (X)

d
6= C (Y)
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6.2. Improvement properties of risk-sharing rules
Classes of properties

I Conservation properties: also hold for the stand-alone RS
rule: reshuffl ing, normalization, translativity, positive
homogeneity, constancy, no rip-off, actuarial fairness, law
invariance.

I Improvement properties: guarantee that the RS rule
’improves’the situation compared to the stand-alone
situation: willingness-to-join, comonotonicity.

I Coalition properties: guarantee that participants are not
affected by coalitions between other participants coalition
fairness, merging fairness.

I Specific pool properties: should hold (or not) for specific
pools only: stand-alone property for comonotonic pools,
uniformity property for exchangeable pools.
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6.2. Improvement properties of ris- sharing rules
Stop-loss order

I Consider the r.v.’s X and Y .

I Definition:
X is smaller than Y in stop-loss order if for any
non-decreasing concave function u : R→ R and any real w ,
one has that

E[u(w − X )] ≥ E[u(w − Y )],

provided the expectations exist.

I Interpretation in expected utility theory:
Risk-averse decision makers prefer loss X over loss Y .

I Notation:
X ≤sl Y
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6.2. Improvement properties of risk-sharing rules
The ’willingness-to-join’property

I Definition:
A RS rule C : χn → χn satisfies the willingness-to-join
property20 if for any X ∈ χn, one has that

Ci (X) ≤sl Xi

holds for any i = 1, 2, . . . , n.

I Interpretation: Any risk-averse participant i will prefer the
contribution Ci (X) over his initial loss Xi .

20In J,K,L,W (2022) this property is called the universal improvement
property.
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6.2. Improvement properties of risk-sharing rules
The ’willingness-to-join’property

I Proposition: If a RS rule satisfies willingness-to-join, then it
also satisfies actuarial fairness, no rip-off and constancy.

I Proof:
I For any i , willingness-to-join implies

E [Ci (X)] ≤ E [Xi ]

The full allocation condition states that
n

∑
i=1

E [Ci (X)] =
n

∑
i=1

E [Xi ]

We can conclude that C is actuarially fair:

E [Ci (X)] = E [Xi ]

I Willingness-to-join implies no rip-off:

Ci (X) ≤ F−1Ci (X) (1) ≤ F
−1
Xi
(1)

I Actuarial fairness and no rip-off imply constancy. 5
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6.2. Improvement properties of risk-sharing rules
The ’willingness-to-join’property

I Proportional RS: does not satisfy willingness-to-join,
since it does not satisfy the no rip-off property.

I Order statistics RS: does not satisfy willingness-to-join,
since it is not an actuarially fair RS rule.

I Conditional mean RS: satisfies willingness-to-join:

E[Xi | S ] ≤cx Xi
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6.2. Improvement properties of risk-sharing rules
Comonotonicity

I Consider the pool X = (X1, . . . ,Xn) with aggregate loss SX.

I Definition: X is comonotonic if there exist non-decreasing
functions gi : R→ R such that

X =
(
g1(SX), . . . , gn(SX)

)
I Interpretation: X is comonotonic if the increase of one of the
individual losses implies an increase of all the other individual
losses.
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6.2. Improvement properties of risk-sharing rules
The ’comonotonicity’property

I Definition: A RS rule C : χn → χn is comonotonic if for any
X ∈ χn, one has that C (X) is a comonotonic random vector.

I Equivalent definition: A RS rule C is comonotonic if for
any X ∈ χn there exists a function hcom : R→ Rn, such that

C (X) = hcom (SX) =
(
hcom1 (SX), . . . , hcomn (SX)

)
where all functions hcomi are non-decreasing.

I Interpretation: Comonotonicity of a RS rule ensures that any
participant has an interest in keeping his loss as small as
possible21.

21For this reason, Carlier & Dana (2003) call this property the no-sabotage
condition.
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6.2. Improvement properties of risk-sharing rules
The ’comonotonicity’property

I Remark 1:

C is comonotonic⇒ C is aggregate⇒ C is internal

I Remark 2:

C is internal; C is aggregate; C is comonotonic

I Stand-alone RS: is not comonotonic. Indeed, for any X,
one has that

C (X) = X

which is in general not comonotonic.
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6.2. Improvement properties of risk-sharing rules
The ’comonotonicity’property

I Uniform RS: comonotonic. Indeed, for any X, one has that
Cuni (X) is comonotonic:

Cuni (X) =
(SX
n
, . . . ,

SX
n

)
I Conditional mean RS: not comonotonic, since the
components of the contribution vector

Ccm (X) =
(
E[X1 | SX], . . . ,E[Xn | SX]

)
are not necessarily non-decreasing in SX.
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6.2. Improvement properties of risk-sharing rules
Comonotonic does not imply type - I comonotonic

Example 6.2.1:
I Consider the RS rule C : χn → χn.

I Suppose that each participant of any pool X belongs to
category 0 (’poor’) or 1 (’rich’).

I For any pool X, the wealth-status (0 or 1) of any participant i
is known at time 0, and denoted by wi (X).

I The RS rule C is defined by

Ci (X) =
SX

∑n
k=1 wk (X)

× wi (X)

in case at least one participant is ’rich’, and by

Ci (X) =
SX
n

if all participant are ’poor’.
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6.2. Improvement properties of risk-sharing rules
Comononotonic does not imply type - I comonotonic

Example 6.2.1 (cont’d):
I The RS rule C is defined by

Ci (X) =
SX

∑n
k=1 wk (X)

× wi (X)

in case at least one participant is ’rich’, and by

Ci (X) =
SX
n

if all participants are ’poor’.

I Interpretation: The aggregate losses of all participants are
uniformly shared between the ’rich’.

I Observations:
I C is a comonotonic RS rule.
I C is not a type I - comonotonic RS rule (in case FX does not
uniquely determine the wealth level of all participants).
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6.3. Coalition properties of risk-sharing rules
Classes of properties

I Conservation properties: also hold for the stand-alone RS
rule: reshuffl ing, normalization, translativity, positive
homogeneity, constancy, no rip-off, actuarial fairness, law
invariance.

I Improvement properties: guarantee that the RS rule
’improves’the situation compared to the stand-alone
situation: willingness-to-join, comonotonicity.

I Coalition properties: guarantee that participants are not
affected by coalitions between other participants: coalition
fairness, merging fairness.

I Specific pool properties: should hold (or not) for specific
pools only: stand-alone property for comonotonic pools,
uniformity property for exchangeable pools.
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6.3. Coalition properties of risk-sharing rules
The ’coalition fairness’property

I Suppose that the participants in the pool
(
X1,X2,X3

)
agree

to use the RS rule C to determine their contributions.

I Next, suppose that participants 2 and 3 decide to form a
coalition, under which they equally share their joint loss
(X2 + X3).

I This coalition transforms the pool
(
X1,X2,X3

)
into

(
X1,

X2 + X3
2

,
X2 + X3
2

)
I It seems reasonable to require that the contribution of
participant 1, who is excluded from this coalition, remains
unchanged.

I RS rules satisfying this property will be said to satisfy the
coalition fairness property.
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6.3. Coalition properties of risk-sharing rules
The ’coalition fairness’property

I Recall: An allocation Y of a pool X ∈ χn is an element of
the following set:

AX =
{
(Y1,Y2, . . . ,Yn) ∈ χn |

n

∑
i
Yi = SX

}
I A coalition between 2 or more partipants in the pool X,
excluding participant i , transforms X into an allocation
Y ∈ AX, with Yi = Xi .
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6.3. Coalition properties of risk-sharing rules
The ’coalition fairness’property

I Definition:
A RS rule C : χn → χn satisfies the coalition fairness
property if for any X ∈ χn and any Y ∈ AX, one has that

Yi = Xi ⇒ Ci (Y) = Ci (X)

holds for any i .

I Interpretation:
I The contribution of a participant in a pool is not affected by
coalitions between other participants in this pool.

I A coalition between a group of participants does not change
the joint contributions of this group.
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6.3. Coalition properties of risk-sharing rules
The ’coalition fairness’property

I Consider the pools X and Y in AX, with Yi = Xi .

I Uniform RS: is coalition fair. Indeed,

C unii (Y) =
SY
n
=
SX
n
= C unii (X)

I Proportional RS: is coalition fair. Indeed,

C propi (Y) =
E [Yi ]
E [SY]

SY =
E [Xi ]
E [SX]

SX = C
prop
i (X)
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6.3. Coalition properties of risk-sharing rules
The ’coalition fairness’property

I Order statistics RS: is not coalition fair. Indeed,
I Consider

(
X1,X2,X3

)
and

(
X1,X2 + X3, 0

)
.

I One has that

Cord1
(
X1,X2,X3

)
= min {X1,X2,X3}

I while

Cord1
(
X1,X2 + X3, 0

)
= min {X1,X2 + X3, 0}

I Conditional Mean RS: is coalition fair. Indeed,

C cmi (Y) = E [Yi | SY] = E [Xi | SX] = C cmi (X)
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6.3. Coalition properties of risk-sharing rules
The ’coalition fairness’property

I Proposition:

A RS rule C : χn → χn satisfies coalition fairness

⇔ for any X ∈ χn and any participant i , one has that

Ci (X) = Ci
(
Xi ei + (SX − Xi ) ej

)
for any j 6= i (2)

I Proposition:
If a RS rule satisfies normalization and coalition fairness,
then it also satisfies reshuffl ing.
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6.4. Specific pool properties of risk-sharing rules
Classes of properties

I Conservation properties: also hold for the stand-alone RS
rule: reshuffl ing, normalization, translativity, positive
homogeneity, constancy, no rip-off, actuarial fairness, law
invariance.

I Improvement properties: guarantee that the RS rule
’improves’the situation compared to the stand-alone
situation: willingness-to-join, comonotonicity.

I Coalition properties: guarantee that participants are not
affected by coalitions between other participants: coalition
fairness, merging fairness.

I Specific pool properties: should hold (or not) for specific
pools only: stand-alone property for comonotonic pools,
uniformity property for exchangeable pools.
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6.4. Specific pool properties of risk-sharing rules
The ’stand-alone for comonotic pools’property

I Definition: A RS rule C : χn → χn satisfies stand-alone
property for comonotonic pools if for any comonotonic
pool X ∈ χn, one has that

C
(
X
)
= X

I Interpretation: In a comonotonic pool, no diversification
benefit arises from risk-sharing. Therefore, it may be
reasonable to require that in such a pool each participant
remains with his own risk.
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6.4. Specific pool properties of risk-sharing rules
The ’stand-alone for comonotonic pools’property

I Uniform RS: does not satisfy stand-alone for
comonotonic pools.
Indeed, for the comonotonic pool X = (U, 2U,U), one has

Cuni
1

(
U, 2U,U

)
=
4
3
U 6= U

I Conditional mean RS: satisfies stand-alone for
comonotonic pools.
Indeed, for the comonotonic pool X =

(
g1(SX), . . . , gn(SX)

)
,

with all gi non-decreasing functions, one has

C cmi
(
X
)
= E [Xi | SX] = E [gi (SX) | SX] = gi (SX) = Xi
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6.4. Specific pool properties of risk-sharing rules
The ’uniformity for exchangeable pools’property

I Definition:

C : χn → χn satisfies uniformity for exchangeable pools if
for any exchangeable pool X ∈ χn, one has:

C
(
X
)
=
SX
n

I Interpretation:

I The exchangeable pool X is homogeneous in the sense that
the joint cdf of X is not changed by reshuffl ing.

I In this case, the uniform RS rule seems to be appropriate.
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6.4. Specific pool properties of risk-sharing rules
The ’uniformity for exchangeable pools’property

I Uniform RS: satisfies uniformity for exchangeable pools.

Indeed, for the exchangeable pool X one has that

C unii

(
X
)
=
SX
n
, i = 1, 2, . . . , n

I Proportional RS: satisfies uniformity for exchangeable
pools.

Indeed, for the exchangeable pool X, one has that

C propi

(
X
)
=

E [Xi ]
E [SX]

SX =
SX
n
, i = 1, 2, . . . , n
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6.4. Specific pool properties of risk-sharing rules
The ’uniformity for exchangeable pools’property

I Order statistics RS: does not satisfy uniformity for
exchangeable pools.
Indeed, for any exchangeable pool X, one has that

C ord1
(
X
)
= min {X1, . . . , ,Xn}

which is not necessarily equal to SX
n .

I Conditional mean RS: satisfies uniformity for
exchangeable pools.
Indeed, for any exchangeable pool X and any i one has that

C cmi
(
X
)
= E [Xi | SX] =

SX
n
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7. Axiomatic characterization of the CMRS rule
I Consider the CMRS rule22 :

Ccm (X) = E [X | SX] , i = 1, 2, . . . , n

I We have proven that Ccm satisfies the following properties:
I Ccm is an aggregate RS rule:

Ccm (X) is SX −measurable
I Ccm satisfies no rip-off: For any i ,

C cm
i (X) ≤ F−1Xi (1)

I Ccm satisfies actuarial fairness: For any i ,

E [C cm
i (X)] = E [Xi ]

I Ccm satisfies coalition fairness: For any Y ∈ AX,

Yi = Xi ⇒ C cm
i (Y) = C cm

i (X)
22We consider the CMRS rule with χ = L1+. However, the results in this

section remain to hold true for any χ = Lq and χ = Lq+, with q ∈ [1,∞].
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7. Axiomatic characterization of the CMRS rule

I Theorem:

I Consider the RS rule C :
(
L1+
)n → (

L1+
)n
, with n ≥ 3.

I C is the CMRS rule if and only if it satisfies the following
axioms:

(1) C is an aggregate RS rule.

(2) C satisfies no rip-off.

(3) C satisfies actuarial fairness.

(4) C satisfies coalition fairness.

I Proof:
I ⇒ : See Denuit, Dhaene & Robert (2022).

I ⇐ 23 : See Jiao, Kou, Liu & Wang (2022). 5

23This is the hard part of the proof.
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7. Axiomatic characterization of the CMRS rule

I Proposition24:

The axioms (1), (2), (3) and (4) are independent.

I Independence means that for any n ≥ 3 and any choice of 3
of these axioms, there always exists a RS rule C which
satisfies these 3 axioms, but not the 4th axiom.

24See J,K,L,W (2022).
90 / 101



7. Axiomatic characterization of the CMRS rule

I Theorem25:

I Consider the RS rule C :
(
L1+
)n → (

L1+
)n
, with n ≥ 3.

I C is the CMRS rule if and only if it satisfies the following
axioms:

(1’) C is an aggregate RS rule.

(2’) C satisfies willingness-to-join.

(3’) C satisfies coalition fairness.

I Proof:
I ⇒ : Follows immediately.

I ⇐ : Follows from property that ’willingness-to-join’implies
’actuarial fairness’and ’no rip-off’. 5

25See J,K,L,W (2022).
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8. Further topics on DRS (not covered in this talk)
I Quantile risk-sharing26:

I The QRS rule is defined such that the contribution of each
participant i is given by F−1Xi (p).

I Probability level p is determined such that the full allocation
condition is satisfied.

I Pareto-optimal risk-sharing27:
I What is the relation between Pareto-optimal risk-sharing and
comonotonicity?

I Risk-sharing pool dynamics28:
I What if we add or withdraw one participant from the pool?29
I What if the number of participants in the pool approaches
infinity?

26See D,D,R (2022) and D,R C D (2023).
27see D,D,G,R (2023).
28Work in progress.
29See D,D,R (2022).

92 / 101



References
I Denuit M., Dhaene J. (2012). Convex order and comonotonic
conditional mean risk sharing. Insurance: Mathematics and
Economics, 51, 249-256.

I Denuit M., Dhaene J., Ghossoub M., Robert Y.C. (2023).
Comonotonicity and Pareto optimality, with application to
collaborative insurance. LIDAM Discussion Paper ISBA 2023/05.

I Denuit M., Dhaene J, Robert C.Y. (2022). Risk-sharing rules and
their properties, with applications to peer-to-peer insurance. Journal
of Risk and Insurance, 89(3), 615-667.

I Dhaene J., Robert C.Y., Cheung K.C., Denuit M. (2023). An
axiomatic theory for quantile-based risk sharing. Submitted.

I Denuit M., Robert C.Y. (2023). From risk reduction to risk
elimination by conditional mean risk sharing of independent losses.
Insurance: Mathematics and Economics, 108, 46-59.

I Feng R.(2023). Decentralized Insurance. Springer Actuarial. pp.
263.

I Jiao Z., Kou S., Liu Y, Wang R. (2022). An axiomatic theory for
anonymized risk sharing. To be published. 93 / 101


