Matematica per l'Economia e la Statistica II (2001-2002)

Academic Year of the Course: 
2001-2002
Course: 
EC020
Matematica per l'Economia e la Statistica II
Teaching staff: 
Romano Isler
Course Outlines: 
Complex numbers. Linear spaces on Q, R, C. Matrices and determinants. Linear equations. Linear applications. Metric on R2 and R3. Scalar product and ortogonality. Linear geometry on R2 and R3.
Link other Courses: 
Il corso completa, seguendo il corso di Matem. per l’econ. e la stat. 1, l'ins. di materie matem. di base per i corsi di Laurea triennale statistico-attuariali, con particolare riguardo all'algebra lineare ed alle sue applicazioni.
Contents: 
Introd. elem. di C, campo dei complessi. Loro struttura alg. e geom. Spazio vettoriale su Q, R e Z. Sottosp., dip. lineare, sistemi generatori e basi. Teor. relativi. Teor. della dimensione. Criteri di dip. ed indip. lineare. Spazio delle n-ple e teor. di isomorfismo. Formula di Grassmann. Matrici e signif. vettoriale. Applic. lineari. Nozioni relative: nucleo, imagine, monomorfismo ed isomorfismo, inversa e relativi teoremi. Matrici associate. Alg. delle matrici. Metodi di riduzione. Sottosp. complementari. Somma e somma diretta. Proiezioni. Spazio delle appl. lineari. Teorema della caratteristica per una matrice. Matrice dell'applicazione composta: prodotto fra matrici. Matrici quadrate. Equazioni lineari: metodi di soluzione ed uso delle matrici. Struttura vettoriale delle soluzioni. Applicazioni multilineari alternanti. Determinante. Proprietà delle forme multilineari alternanti. Determinante di una matrice quadrata. Regole di calcolo. Formule di Laplace (senza dim.). Criteri di dip. ed indip.. Inversione di una matrice. Matr. ortogonali, sottom. e minori. Teor. della caratteristica e di Kronecker (senza dim.). Formula di Cramer. Camb. di base e matrici associate. Autovalori ed autovettori. Regole di calcolo con matrici. Metrica nel piano e nello spazio cartesiano. Distanza ed ortogonalità, prod. scalare. Nozioni di geom. lineare in sp. vett. e di geom. anal. nel piano.
Recommended Texts: 
Romano Isler: "Matematica Generale" Ed. Goliardiche - Trieste 2001 (IV edizione)
Last update: 12-11-2013 - 15:10