Calcolo delle probabilità (1999-2000)

Anno Accademico: 
1999-2000
Insegnamento: 
20052
Calcolo delle probabilità
Docente: 
Lucio Crisma
Obiettivi: 

Il corso viene impartito nel secondo semestre e si propone di fornire gli elementi fondamentali per un approccio corretto alle problematiche in condizioni di incertezza, curando sia gli aspetti concettuali (descrizione di situazioni incerte e loro valutazioni: nozioni di probabilità e speranza matematica) che quelli tecnici (strumenti e tecniche di calcolo).

Collegamento con altri insegnamenti: 

Per la comprensione del corso sono indispensabili gli elementi metodologici e strumentali di matematica che vengono impartiti nei corsi istituzionali del primo biennio, compresi quelli che vengono impartiti nel corso di Analisi matematica che si svolge nello stesso anno, ma in primo semestre. Le conoscenze acquisite in questo insegnamento sono essenziali per il proseguimento degli studi nei cordi di laurea in Scienze Statistiche e Attuariali e in Statistica e Informatica per l’Azienda, poiché esse vengono utilizzate nelle materie statistiche, in quelle attuariali (specialmente in Teoria del Rischio e Tecnica Danni) e per lo studio dell’evoluzione stocastica dei mercati finanziari.

Programma: 

Il corso è tenuto in modo tradizionale ed è integrato da numerose esercitazioni (tre ore per settimana). L’esame prevede una prova scritta e una prova orale. Proposizioni della logica. Eventi. Operazioni con eventi: negazione, binarie e multiple. Relazioni tra eventi: incompatibilità, esaustività, implicazione. Partizioni dell’evento certo. Eventi logicamente dipendenti, semi-dipendenti da una partizione e da un insieme di eventi. Partizione prodotto. Probabilità. Considerazioni intuitive in ambiente finito e infinito (probabilità geometriche). Quozienti di probabilità e funzione peso. Probabilità coerenti. Condizioni necessarie e condizioni sufficienti per la coerenza. Probabilità concentrate e diffuse. Probabilità continue. Prolungamenti coerenti. Limitazioni di probabilità. Eventi condizionati: operazioni, relazioni e loro proprietà. Probabilità condizionate coerenti. Teorema delle probabilità composte. Disintegrabilità e conglomerabilità . Modelli d’estrazione con due o più alternative. Distribuzioni di probabilità su partizioni finite: binomiale, multinomiale, ipergeometrica e di Pólya semplici e multiple. Modelli di collocazione. La statistica delle particelle. Processi di eventi scambiabili. Scambiabilità condizionata. Probabilità e frequenza osservata. Eventi e partizioni stocasticamente indipendenti. Numeri aleatori (variabili aleatorie). Speranza matematica per numeri aleatori (n.a.) finiti e numerabili. Funzione generatrice della probabilità. Funzione di ripartizione. Speranza matematica e momenti di un n.a. in generale. Funzione di ripartizione doppia e multipla. Momenti misti. Numeri aleatori condizionati. Distribuzioni marginali. Distribuzioni condizionate. Disuguaglianze di Markov e Bienaymé-Cebicev. Distribuzioni particolari: geometrica, di Poisson, esponenziale, uniforme, normale. Numeri aleatori stocasticamente indipendenti e correlati. Regressione e regressione lineare. Funzione generatrice dei momenti. Funzione caratteristica. Teoremi di P. Lévy e di Lévy-Cramér (enunciati). Leggi dei grandi numeri: teoremi di Bernoulli, Cebicév, Poisson, Khintchine. Teorema di Lindeberg-Lévy (limite centrale). Passeggiate aleatorie unidimensionali. Ritorno all’origine. Problema della rovina del giocatore. Catene markoviane finite. Classificazione e ordinamento degli stati. Problemi di assorbimento. Catene ergodiche. Il caso regolare. Teorema di Markov (enunciato). Comportamento asintotico di una catena regolare.

Testi consigliati: 

Luciano Daboni, Calcolo delle Probabilità ed elementi di Statistica UTET, TorinoLucio Crisma Lezioni di calcolo delle probabilità Edizioni Goliardiche, Trieste

Ultimo aggiornamento: 06-07-2015 - 17:11