- Home
- Dipartimento
- Ricerca
- Didattica
- Corsi di laurea
- Corsi di studio
- Informazioni agli studenti
- Elenco insegnamenti - Programmi d'esame
- Archivio Elenco Insegnamenti - Programmi
- Orario delle lezioni e Calendario didattico
- Bacheca appelli Guida Online
- Calendario lauree
- Informazioni specifiche Calendario lauree
- Segreteria studenti
- Bandi
- Collegio universitario Luciano Fonda
- Mobilità internazionale
- Premi di studio
- Orientamento
- Sbocchi professionali
- Stage e tirocini
- Modulistica di Ateneo
- Post Lauream
- Servizi e strumenti
- Trasferimento della conoscenza
Statistica (Corso Progredito) (2009-2010)
Anno Accademico:
2009-2010
Insegnamento:
526EC
Statistica (Corso Progredito)
Docente:
Francesco Pauli
Nicola Torelli
Obiettivi:
Il corso è suddiviso in due parti. Nella prima si propone di introdurre le principali idee dell'inferenza statistica con particolare attenzione all'approccio basato sul concetto di verosimiglianza. Nella seconda l'attenzione è sulla specificazione e stima di di modelli statistici complessi con attenzione a modelli non lineari e con struttura dell'errore non gaussiana. In particolare verranno considerati i modelli lineari generalizzati e le loro estensioni.
Collegamento con altri insegnamenti:
Oltre che con tutti gli altri corsi di statistica avanzata il corso ha collegamenti con gli insegnamenti di statistica assicurativa.
Programma:
I parte: Inferenza Statistica
- Richiami essenziali di teoria della probabilità.
- Modelli statistici parametrici e funzione di verosimiglianza. Riassunti sufficienti e sufficineti minimali.
- La stima di massima verosimiglianza. L'informazione di Fisher e le proprietà della stima di massima verosmiglianza.
- La verifica di ipotesi. Test connessi alla verosimiglianza. Rapporto di verosimiglianza. Verosimiglianza profilo. Importanti esemplificazioni. Stima intervallare.
II parte: I modelli lineari generalizzati
- Introduzione ai modelli lineari generalizzati(GLM): struttura ed alcuni esempi notevoli.
- La famiglia esponenziale. La funzione di verosimiglianza e i momenti. La funzione legame. GLM: Specificazione completa. Funzioni di legame canoniche.
- Inferenza nei GLM. Stima dei parametri di un GLM. Informazione di Fisher. Legame canonico. Algoritmi iterativi La stima del parametro di dispersione.
- Valutazione dell'adeguatezza dei modelli. Devianza. Tipi di residui: Pearson, devianza, Anscombe.
- Applicazioni all'analisi di tabelle di frequenza multiple. La verosimiglianza per modelli log-lineari pre diverse strategie campionarie. La devianza per un modello Poisson
log-lineare. Modelli per tabelle con dimensione maggiore
di due. Indipendenza marginale, indipendenza condizionata, indipendenza in blocco.
- Applicazione dei GLM per l'analisi di dati di sopravvivenza. Funzione di rischio e modelli a rischi proporzionali. Verosimiglianza e specificazione nell'ambito dei GLM per modelli con baseline completamente nota.
- Modelli con sovradispersione. La quasi verosimiglianza.
Testi consigliati:
Azzalini A. (2001), Inferenza Statistica, Una presentazione basata sul concetto di verosimiglianza. Springer.McCullagh, P., Nelder, J.A. (1989), Generalized
Linear Models, Chapman & Hall, London.
Faraway, J.J., (2006), Extending the linear model with R: generalized linear, mixed effects and nonparametric regression models, Chapman & Hall
Ultimo aggiornamento: 11-12-2013 - 16:27